Unitevi a noi al Binding Hook Live il 27 ottobre all'Underbelly Boulevard Soho di Londra.
Unitevi a noi al Binding Hook Live

Apprendimento automatico

This module explores machine learning, focusing on algorithms and models that enable computers to learn from and make predictions or decisions based on data. It covers supervised, unsupervised, and reinforcement learning techniques, along with practical applications in areas such as image recognition, natural language processing, and predictive analytics.

Portale > Intelligenza artificiale > Apprendimento automatico

Costruttore di programmi di studio

Sutton, Richard S. e Andrew G. Barto. Apprendimento per rinforzo: An Introduction. Seconda edizione. Adaptive Computation and Machine Learning Series. Cambridge, Massachusetts: The MIT Press, 2018.

Barber, David. Bayesian Reasoning and Machine Learning. 1st ed. Cambridge University Press, 2012.

https://doi.org/10.1017/CBO9780511804779

MacKay, David J.C. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

Bishop, Christopher M. Pattern Recognition and Machine Learning. Information Science and Statistics. New York: Springer, 2006.

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. “Introduction.” In Foundations of Machine Learning, 504. The MIT Press, 2018.

https://mitpress.mit.edu/9780262039406/foundations-of-machine-learning/

Murphy, Kevin P. “Chapter 24: Markov Chain Monte Carlo (MCMC) Inference” and “Chapter 25: Clustering.” In Machine Learning A Probabilistic Perspective. London, England: The MIT Press, 2012.

Wyner, Abraham J., Matthew Olson, Justin Bleich, and David Mease. “Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers.” arXiv, April 29, 2017.

http://arxiv.org/abs/1504.07676

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer Series in Statistics. New York, NY: Springer New York, 2009.

https://doi.org/10.1007/978-0-387-84858-7

Wasserman, Larry. All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics. New York, NY: Springer New York, 2004.

https://doi.org/10.1007/978-0-387-21736-9

Grazie per esserti iscritto alla nostra newsletter!

Grazie! RSVP ricevuto per Sutton, Richard S. e Andrew G. Barto. Apprendimento per rinforzo: An Introduction. Seconda edizione. Adaptive Computation and Machine Learning Series. Cambridge, Massachusetts: The MIT Press, 2018.

Grazie per aver fatto domanda! Ci metteremo in contatto con voi.

Candidatura per: Sutton, Richard S. e Andrew G. Barto. Apprendimento per rinforzo: An Introduction. Seconda edizione. Adaptive Computation and Machine Learning Series. Cambridge, Massachusetts: The MIT Press, 2018.

Sutton, Richard S. e Andrew G. Barto. Apprendimento per rinforzo: An Introduction. Seconda edizione. Adaptive Computation and Machine Learning Series. Cambridge, Massachusetts: The MIT Press, 2018.

Caricamento...

Caricamento...